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1
IDENTIFICATION OF PERFORMANCE
BOTTLENECKS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/732,920, filed Jan. 2, 2013, the disclosure of
which is incorporated by reference herein in its entirety.

BACKGROUND

The present disclosure relates generally to analysis of pro-
gram efficiency, and more specifically, to an identification of
performance bottlenecks.

A bottleneck is a region of a program (e.g., program code)
where significant execution time is spent. Typically, software
developers use a profiling tool to collect program execution
profiles such as the timing information for each method,
routine, process, etc. With the help of such a profiling tool, the
developer can sort, e.g., methods by the time spent on them.
The methods that consume an amount of time greater than a
threshold defined by, e.g., the developer may be treated as
bottlenecks. However, the effectiveness of this approach
depends on the program’s runtime characteristics. Many pro-
grams, such as large enterprise commercial applications, do
not have obvious bottlenecks. Therefore, their profiles con-
tain a large amount of routines, processes, or methods where
the execution time is spent relatively evenly (e.g., within a
threshold). This type of profile is often referred to as a “flat
profile” because no method dominates the execution time.

Prior technologies fail to totally solve the problem ofiden-
tifying bottlenecks in flat profiles. For example, prior tech-
nologies are unable to detect potential bottlenecks in the form
of'a sub-graph, i.e., multiple sequential paths breaching from
a single entry node. Prior technologies take a long time to
complete mining when processing large profile data.

SUMMARY

An embodiment is directed to a method comprising: iden-
tifying, by an apparatus comprising a processing device, a
pattern in a graph that has a support value greater than a
threshold, wherein: the graph comprises a plurality of
weighted nodes coupled to one another by one or more
weighted edges, and each of the plurality of nodes is associ-
ated with at least one weighted attribute.

An embodiment is directed to a computer program product
for identifying bottlenecks, the computer program product
comprising a computer readable storage medium having
computer readable program code embodied therewith, the
computer readable program code executable by a computer to
perform a method comprising: identifying a patternin a graph
that has a support value greater than a threshold, wherein: the
graph comprises a plurality of weighted nodes coupled to one
another by one or more weighted edges, and each of the
plurality of nodes is associated with at least one weighted
attribute.

An embodiment is directed to an apparatus comprising: at
least one processor, and memory having instructions stored
thereon that, when executed by the at least one processor,
cause the apparatus to: construct an execution flow graph
(EFG) representative of an execution of a computer program,
mine for 0-edge sub-graph patterns in the EFG that have
support values that exceed a threshold, insert the 0-edge sub-
graph patterns and respective instances of the 0-edge sub-
graph patterns into a first data structure and a second data
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structure, and insert a string representation of the 0-edge
sub-graph patterns into a third data structure.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The foregoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 depicts an exemplary system architecture in accor-
dance with one or more embodiments;

FIG. 2 depicts an exemplary node in accordance with one
or more embodiments;

FIG. 3 depicts an exemplary modeling of a dataset as a flow
graph in accordance with one or more embodiments;

FIG. 4 depicts exemplary instances of a sub-graph pattern
in accordance with one or more embodiments;

FIG. 5 depicts an exemplary flow chart of a method in
accordance with one or more embodiments;

FIG. 6 depicts exemplary intermediate states in the process
of mining sub-graph patterns in accordance with one or more
embodiments;

FIG. 7 depicts exemplary results of the process of mining
sub-graph patterns, including nodes with two attributes, in
accordance with one or more embodiments;

FIG. 8 depicts an exemplary pattern-growth for a sub-
graph pattern in accordance with one or more embodiments;
and

FIG. 9 depicts an exemplary pattern-growth for a sub-
graph pattern in accordance with one or more embodiments.

DETAILED DESCRIPTION

The appendix included towards the end of this disclosure
provides definitions for a number of terms that are used
throughout herein.

In accordance with various embodiments of the disclosure,
supported patterns may be discovered in one or more attrib-
uted flow graphs. A flow graph may include weights or values
with respect to attributes, nodes, and/or edges. In some
embodiments, the discovery may be obtained in connection
with an execution of a program, such as a computer program.
In some embodiments, a level of support for a pattern may be
determined based on an analysis of a frequency associated
with one or more nodes and/or edges.

In some embodiments, execution patterns (e.g., frequent
execution patterns) may be identified as potential or candidate
performance bottlenecks in the form of sub-graphs.

In some embodiments, a mining technique (e.g., a sub-
graph mining technique) may be applied on program execu-
tion profiles (e.g., flat program execution profiles) repre-
sented as a set of execution flow graphs (EFGs).

In some embodiments, the types of patterns found may be
extended from sequential patterns only (found in sub-paths of
EFGs) to patterns composed of multiple paths (found in sub-
graphs of EFGs).

In some embodiments, a labeling system may be con-
structed to uniquely identify sub-graphs.
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In some embodiments, pattern registration may be used to
solve pattern growth challenge(s). For example, pattern reg-
istration techniques may be used to keep or maintain a list of
where nodes in a graph occur or appear for purposes of pattern
expansion. Such a list may be used to expand, e.g., a single
node to two nodes by facilitating a search of nodes referenced
in the list. In this manner, each node might not be examined
repeatedly during a growth or expansion process. For
example, the list may provide for merely checking the neigh-
bors of nodes referenced in the list.

In some embodiments, a mapping may be constructed from
execution patterns to instances in application code. In some
embodiments, one or more execution patterns and/or the
instance(s) in the application code responsible for generating
the execution pattern(s) may be provided as output. In some
embodiments, a compiler may use the output to determine
whether attributes or a particular flow is desirable or appro-
priate. In some embodiments, the compiler may use the out-
putto obtain a more efficient program realization or execution
sequence.

In some embodiments, frequent sub-graph and/or sequen-
tial execution patterns may be identified as potential perfor-
mance bottlenecks. Aspects of the disclosure may improve
the speed or efficiency of mining relative to other techniques
via the use of a pattern registration technique and via the use
and identification of characteristics of an EFG. Aspects of the
disclosure may be used by, e.g., software developers. In some
embodiments, program code that is an instance of a discov-
ered pattern may be located using, e.g., a mapping system.

It is noted that various connections are set forth between
elements in the following description and in the drawings. It
is noted that these connections in general and, unless speci-
fied otherwise, may be direct or indirect and that this speci-
fication is not intended to be limiting in this respect. In this
respect, a coupling of two entities may refer to a direct con-
nection or an indirect connection, and may include an inter-
vening entity.

Referring to FIG. 1, an exemplary system architecture 100
is shown. The architecture 100 is shown as including a
memory 102. The memory 102 may store executable instruc-
tions. The executable instructions may be stored or organized
in any manner. As an example, at least a portion of the instruc-
tions are shown in FIG. 1 as being associated with a first
thread 104a and a second thread 1045, although any number
of threads may be included. The instructions stored in the
memory 102 may be executed by one or more processors,
such as a processor 106.

The threads 104a and 1045 may be associated with a
resource 108. For example, the resource 108 may include one
or more pages, which may be organized as one or more
blocks, objects, fields, strings, elements, or the like. The
threads 104a and 1045 may access the resource 108 concur-
rently (e.g., concurrently in terms of time or space), such that
the resource 108 may be, or include, a shared resource. In
some embodiments, the resource 108 may include one or
more input/output (/O) devices, such as a keyboard, a mouse,
a button, a switch, a trackball, a display screen, etc.

In some embodiments, one or more of the entities shown in
FIG. 1 may be replicated. For example, in some systems,
multiple computing devices may access the resource 108. In
some embodiments, the computing devices may be coupled
to one another via one or more networks, such as the Internet.

Turning now to FIG. 2, an example of a node 200 is shown.
The node 200 may be associated with an execution flow graph
(EFG).

The node 200 may include, or be associated with, one or
more characteristics or parameters. For example, a parameter
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4

202 may be indicative of a weight associated with the node
200. The weight 202 may reflect time spent executing the
node, optionally in terms of clock cycles or ticks. In the
example shown in FIG. 2, the node 200 has a weight 202 equal
to fifty (50).

A parameter 204 may be indicative of an edge frequency
associated with the node. The edge frequency 204 may be
indicative of how often the node 200 is executed. In the
context of an EFG, the edge frequency 204 may be indicative
ot how many times the node 200 is entered from one or more
other nodes.

A parameter 206 may serve as a label for the node 200. The
label 206 may include a unique identifier for the node 200.
The label 206 may be represented in different formats. For
example, string or alphanumeric formats may be used for the
label 206 in some embodiments. In the example shown in
FIG. 2, the label of node 200 is a symbol referred to by the
notation ‘L(v)’.

The node 200 may be associated with one or more
attributes 208. The attributes may be used to characterize the
node 200 and may include one or more values. In the example
shown in FIG. 2, the node 200 is associated with attributes
208 ‘a’ and ‘b’, where the attribute ‘a’ has a value of'ten (10)
and the attribute ‘b’ has a value of twenty (20). The attributes
208 may be selected from a set or pool of attributes 210. In the
example shown in FIG. 2, the set of attributes 210 includes
attributes ‘a’, ‘b’, ‘¢’, and ‘d’.

FIG. 3 depicts an exemplary dataset of EFGs. Specifically,
FIG. 3 depicts an EFG 302 and an EFG 304. The EFG 302
may include nodes v1,v2,v3,v4, and v5. Thenode vl may be
coupled to the node v2. The node vl may be coupled to the
node v3. The node v2 may be coupled to the node v4. The
node v3 may be coupled to the node v4. The node v4 may be
coupled to the node v5. The coupling of the nodes v1-v5 may
be based on one or more edges (e.g., edge 204 of FI1G. 2), with
frequencies as shown in FIG. 3.

Thenode vl may have ‘a’and ‘b’ as attributes. The node v2
may have ‘b’ as an attribute. The node v3 may have ‘b’ and ‘d’
as attributes. The node v4 may have ‘a’ as an attribute. The
node v5 may have ‘b’ as an attribute. The values for the
attributes with respect to the nodes v1-v5 may be as shown in
parentheses FIG. 3.

The EFG 304 may include nodes v6, v7, v8, and v9. The
node v6 may be coupled to the node v7. The node v6 may be
coupled to the node v8. The node v7 may be coupled to the
node v9. The node v8 may be coupled to the node v9. The
coupling of the nodes v6-v9 may be based on one or more
edges (e.g., edge 204 of FIG. 2), with frequencies as shown in
FIG. 3.

The node v6 may have ‘a’and ‘¢’ as attributes. The node v7
may have ‘b’ as an attribute. The node v8 may have ‘d’ as an
attribute. The node v9 may have ‘a’ and ‘c’ as attributes. The
values for the attributes with respect to the nodes v6-v9 may
be as shown in parentheses in FIG. 3.

Taking the EFGs 302 and 304 together, a total weight may
be calculated as a sum of weights of all the nodes. Thus, the
total weight for the nodes v1-v9 may be equal to: 30+10+20+
20420+10+20+10+10=150. Similarly, a total frequency may
be calculated as a sum of the frequencies of all the edges.
Thus, the total frequency for the EFGs 302 and 304 may be
equal to: 104+4+6+4+6+10+14+7+6+7+6=80.

The EFGs 302 and 304 may include a number of sub-graph
patterns. A sub-graph pattern may be sequential (represented
as a sub-path of the EFG) or may contain split and join nodes.
A sub-graph pattern may be deemed frequent if its support
value exceeds a threshold. In some embodiments, the thresh-
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old may be defined or selected by a user. The support value of
a pattern may correspond to a maximum of its time support
(e.g., weight) and frequency.

Turning now to FIG. 4, an example of a sub-graph pattern
402 is shown. The sub-graph pattern 402 has attributes {a, b}.
A mining process may be applied to identify instances in the
dataset of EFGs 302 and 304 that include the sub-graph
pattern 402. As shown in FIG. 4, four instances (instance0,
instancel, instance2, and instance3) may be identified in the
EFGs 302 and 304 as including the sub-graph pattern 402.

In order to calculate S_w(g), the time (node weight) sup-
port value of the sub-graph pattern 402, the weight of the
attribute with minimum weight may be selected in each of the
instances of the sub-graph pattern 402 found in the dataset.
According to the example shown in FIG. 4, that would be:
min_w(instance0)=2 (from b), min_w(instancel)=5 (from
b), min_w(instance2)=4 (from b), min_w(instance3)=3
(from a).

It is noted that, in instance3 of the sub-graph pattern 402,
the actual minimum attribute weight is 1, belonging to
attribute ‘c’. However, ‘¢’ is not part of the attributes of the
sub-graph pattern 402, and as a consequence, it is not
included in the calculation. After obtaining the minimum
attribute weights for every instance of the sub-graph pattern
402, they may be added to obtain S_w(g):

S__w(g)=min_ w(instance0)+min_ w(instancel )+
min_ w(instance2)+min_ w(instance3)=2+5+4+
3=14.
Likewise, to obtain S_{{g) the minimum edge frequencies
of all instances of the sub-graph pattern 402 may be added:

min_ flinstance0)=4, min_ flinstancel)=6, min_ f
(instance2)=10, min_ f{instance3)=7.

S_Ag)=min_ flinstance0)+min_ flinstancel )+min_ f
(instance2)+min_ flinstance2 }+min_ flin-
stance3 )= 4+6+10+7=27.

The final support value S_m(g) of the sub-graph pattern
402 may be calculated as the maximum between S_w(g) and
S_f(g): S_m(g)=max {S_w(g), S_f(g)}. In the example
shown in FIG. 4, the final support value S_m(g) would be
equal to S_f(g)=27.

In some embodiments, one or more of the time (node
weight) support value S_w(g), the frequency (edge weight)
support value S_1(g), and the final support value S_m(g) may
be normalized to facilitate comparison with, e.g., a threshold
value as described further below.

Turning now to FIG. 5, a flow graph of a method 500 is
shown. The method 500 may be used to generate and provide
an output set of frequent sub-graph patterns associated with
one or more dataset EFGs.

The method 500 may start in block 502, and flow may
proceed from block 502 to block 504. In block 504, one or
more EFGs may be constructed. For example, a set of EFGs,
denoted as DS, may be constructed from profile data.

From block 504, flow may proceed to block 506. In block
506, mining for fl-edge sub-graph patterns may be performed.
These patterns in the dataset may satisty the following con-
ditions: 1) are composed of a single node each, 2) have a
combination of one or more of the attributes present in Ini-
tialAttributelist, and 3) are frequent. The generation of such
patterns may work by considering that every node created
may carry a distinct set of attributes. Initially, the attributes
may come from Initial AttributeList, which may be a list that
contains distinct attributes that are selected as being of inter-
est. A node may be created for every distinct attribute in the
list. Then the nodes may be mined using a Sub-graph pattern
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mining technique (described further below). Those nodes that
are frequent may have their attributes combined to generate
additional nodes with sets of two distinct attributes each. The
new nodes may also be mined for, and those that are found to
be frequent are used to generate other nodes with sets of three
distinct attributes each, and so on, until no nodes with a
certain size of attribute set (in number of attributes) are fre-
quent.

After 0-generation of patterns are discovered, the method
500 may populate one or more data structures to keep track of
these patterns and prepare for pattern growth. For example, in
block 508 the 0-edge sub-graph patterns and respective
instances may be inserted into a data structure OutputSet.
OutputSet may correspond to a set of frequent sub-graph
patterns identified by the method 500. As part of block 508,
the 0-edge sub-graph patterns and respective instances may
be inserted into the end of Q. Q may be a data structure, such
as a queue, that holds frequent sub-graph patterns that may be
extended.

In block 510, string representations of the 0-edge sub-
graph patterns may be inserted into a frequent sub-graph
pattern label table H. H may correspond to a data structure,
such as a hash-table, that holds the string representation (de-
scribed further below) of frequent sub-graph patterns. H may
be used to lookup whether a pattern has already been mined
for.

Distinct attributes present in the 0-generation patterns may
be saved in a CurrentAttributeList. Such attributes may be
used to compose candidate patterns for the next generation of
patterns (e.g., 1-generation).

Blocks 514-532 may be indicative of sub-graph pattern
growth activity. One or more of the block 514-532 may be
used to extend one or more patterns in Q to generate child
sub-graph patterns.

As an example, a first pattern in Q, which may be referred
to as g, may be selected (e.g., based on a flow from block 512
to block 520, and from block 520 to block 522). An extension
of g (e.g., block 524) may be obtained by generating candi-
date patterns that are spanned by attaching to g a new node,
connected to gby a new edge. In orderto do that, a choice may
be made, among the nodes in g, of a pivot node to which the
new node will be connected, and then the new node and edge
may be generated. Every node of g may be used once as a
pivot node for candidate generation. New nodes may be gen-
erated similarly for the 0-edge sub-graphs. Instead of Ini-
tial AtributeList, however, CurrentAttributeList may be used.
In order to create a candidate sub-graph pattern, each attribute
in CurrentAttributeList may be associated to a new node,
which may be connected to g to generate new candidate
patterns g'. Every new candidate pattern g' may then be mined
for in the DS using a sub-graph pattern technique (described
further below). If ¢' is frequent, g' may be inserted into a set C
of frequent children of g. Otherwise, g' may be discarded.

When all frequent child patterns of g that contain one
attribute each have been placed into C, their attribute sets may
be combined to generate new nodes that have two distinct
attributes each. The new nodes may then be connected to g
and the spanned candidate patterns may be mined for in the
dataset. Those that are frequent may be placed into C (e.g.,
block 524), and their attribute sets of size two (in number of
attributes) may again be combined to generate nodes with
three attributes each. This process may repeat, with incre-
ments in the number of distinct attributes associated with the
new nodes, until no more candidate patterns are found to be
frequent.

The other way by which sub-graph pattern g may be
extended (e.g., block 524) is the addition of a new edge that
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connects two already existing nodes in g. All nodes of g may
be used as a pivot node and target node for such edge addi-
tions, but there might be no repeated edges in the new candi-
date sub-graph patterns generated by the additions. Every
candidate pattern generated may be mined for in the dataset,
and if frequent, may be inserted into C. Otherwise, the can-
didate may be discarded.

Every time a child sub-graph pattern is generated, it may be
mined for in the dataset. Those children of g that are frequent,
if any, may be inserted into the end of Q, into H, and then
placed into OutputSet, along with identifiers for all the
instances of such children (e.g., block 532). Pattern g may
then be removed from Q. The sub-graph pattern growth pro-
cess may be repeated by taking the next pattern in Q. The
child patterns of g might only be extended after all sub-graph
patterns that have the same size as g are, themselves,
extended. In other words, the patterns in the (k+1)-generation
might only be extended after all patterns in the k-generation
are extended. When all patterns in the k-generation are
extended, CurrentAttributeList may be emptied of its con-
tents, which were all the distinct attributes present in the
patterns of the (k—1)-generation, and filled with all the dis-
tinct attributes found in the patterns of the k-generation that
has just been processed. CurrentAttributeList may serve to
compose the candidate patterns for the (k+1)-generation.

When Q is finally empty (e.g., the “Yes” block 514 out of
decision block 512 executes) and the loop associated with
blocks 512, 520, 522, 524, 526,528, 530, and 532 is finished,
the method 500 has as its output all patterns in OutputSet
(e.g., block 516) and the identifiers of each of the instances
where the patterns were found. The fact that OutputSet
includes information on which patterns are frequent and
where in the dataset the instances of such patterns are located,
may be used or exploited by one or more entities, such as a
compiler. The method 500 may then end at block 518.

Having described the method 500, additional detail is pro-
vided below regarding the sub-graph pattern mining tech-
nique that may be used.

Sub-graph pattern mining may be used to search for
instances of a candidate pattern g in the DS. In order to
improve performance, a mining of redundant candidate pat-
terns in the dataset may be prevented. Before the mining
starts, a verification or check may be performed to confirm
that g has not been previously searched for and found in the
dataset. If it has, then searching for g would be redundant.

Redundant candidate pattern detection decreases the num-
ber of candidate patterns that the method 500 needs to search.
Redundant patterns may be generated because the growth of
different sub-graph patterns may lead to one or more of their
child patterns being isomorphic to each other.

In order to quickly detect if two sub-graphs are isomorphic
to each other, a sub-graph pattern labeling system may be
used. Every sub-graph pattern may be represented as a string
of characters and the strings for the two sub-graphs may be
compared. If the strings are the same, the sub-graphs may be
deemed isomorphic.

In some embodiments, the string format used to represent
a sub-graph of n edges may take the form of:
(edge_0)(edge 1) ... (edge_n),
with each edge being represented as:
([from-node][to-node]),
and each node v may be represented as:

L(v): (attr_ D)(attr_2) ... (attr_k) . . . (attr_m), with attr_k
being the k-th attribute of node v, 1<=k<=m and m>=1.

When checking for sub-graph isomorphism using strings, a
necessary condition for the isomorphism to be confirmed may
be that there should be a direct correspondence between the
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identifier labels L(v) of every node v of the two sub-graphs
being compared. This condition may require that labels be
given in a consistent fashion. For example, if two sub-graphs
are isomorphic, even if their nodes are created in different
order, their correspondent nodes may have the same labels.
For this to occur, the label of a sub-graph pattern node may be
defined as the order in which the node is visited during a
depth-first traversal of the sub-graph.

The mining procedure may use the described string repre-
sentation of sub-graphs to detect redundant candidate pat-
terns by using H, which may hold the string representations of
all frequent sub-graphs identified up to that point in the min-
ing process. Every candidate pattern, before being mined for,
may have its string representation looked up in H. If an
identical string already exists in H, the candidate pattern is
redundant and may be discarded. Otherwise, the mining pro-
ceeds. In some embodiments, instead of storing in H only the
string representations of frequent sub-graphs, all candidate
sub-graphs ever generated and tested could be stored. Storing
all such candidate sub-graphs ever generated and tested might
be impractical when mining large datasets with many pos-
sible patterns because H might consume too much memory.

The mining procedure of a candidate sub-graph pattern g'
may be state-based and work separately on each EFG of the
dataset. For each EFG G, an attempt may be made to find all
existing maps, if any, between nodes and edges in g' and
nodes and edges in G. In other words, an attempt may be made
to locate instances of g' in G. In order to build such maps, pairs
{v_g', v_G} of candidate nodes coming from g' and G,
respectively, may be selected. The choice may be made by
iterating over the node sets of both g' and G and simply
picking the first pair that has not been tested yet. A pair may
be added to a map if'it is feasible, which means it may follow
two rules: 1) attributes of v_G should be exactly the same as
or a superset of attributes in v_g', and 2) edge structure
between v_g' and v_G should be maintained. This may imply
checking all incoming and outgoing edges of both nodes and
making sure the other nodes to which such edges connect
obey the preceding first rule.

If the sub-graph being searched for is a 0-edge sub-graph,
the procedure might only end when all nodes in DS have been
visited. Otherwise, the procedure may end when it has
checked (in a manner that will be described later on) all
elements of the list Instances(g, G) for every G in DS, where
g is the parent sub-graph of g'. As the nodes of DS or elements
of Instances(g, G) are visited, goal states and/or dead-end
states may be found.

A goal state may be defined as having all nodes in g
mapped to a set of (potentially non-unique) nodes in G. A
dead-end state may be a partial mapping between nodes in g'
and G, where no additional pair of nodes from g' and G can be
found in order to proceed with the mapping construction.
Every time a goal state is reached, the support values S_w and
S_f of g' may be updated with the support values of the
located instance, G may be added to DS(g") and the located
instance of g' may be added to Instances(g', G).

As described above, when g' is a k-edge sub-graph, with
k>0, the mining procedure might only end when all elements
in the list Instances(g, G) have been visited. An advantage of
keeping Instances(g, G) may be the knowledge that the
instances of g' are necessarily a subset of the instances of its
parent sub-graph g. As a consequence, the instances of g can
be used as partial maps for g'. It may also be known that ¢'
differs from g only by an extra edge or an extra edge and node.
The extra edge, during the growth process of g, may be
connected to a node in g (the pivot node). Therefore, for every
element in Instance(g', G), the node pivot_G that is the cor-
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respondent, in G, to the pivot node may be selected. A check
may be performed to determine if the extra edge or extra edge
and node from g' have their correspondents among those
edges and nodes that are connected to pivot_G. If the corre-
spondence exists, an instance has been found.

The technique described above may provide for using the
instances of a sub-graph pattern as starting points when min-
ing for its child sub-graph patterns (instead of visiting every
node in the dataset of EFGs). The technique may be referred
to as sub-graph pattern registration.

FIG. 6 is exemplary of the process of mining for sub-graph
patterns in accordance with one or more embodiments. In
FIG. 6, 0-edge sub-graph patterns that have a single attribute
associated to them are identified. Each of the nodes 602, 604,
606, and 608 has an attribute associated with it. For example,
the node 602 has attribute ‘a’ associated with it. The node 604
has attribute ‘b’ associated with it. The node 606 has attribute
‘¢’ associated with it. The node 608 has attribute ‘d” associ-
ated with it. The attributes ‘a’, ‘b’, ‘c’, and ‘d’ may be ele-
ments or members of the Initial AttributeList.

As shown in FIG. 6, support values Sw, St, and Sm may be
calculated for each of the nodes 602-608. The node 606 is
shown with a large/heavy ‘X’ through it to indicate that the
node 606 is determined to not be frequent, as its support value
of Sm=0.027 may be less than a minimum support value of
MinSup=0.03 in this example. Conversely, the support values
Sm for the nodes 602, 604, and 608 are greater than or equal
to MinSup=0.03 in this example. As such, the nodes 602, 604,
and 608 may be determined to be frequent.

FIG. 7 depicts a resumption of the exemplary mining pro-
cess for 0-edge sub-graph patterns relative to FIG. 6. Those
patterns that are frequent in FIG. 6 (e.g., patterns associated
with nodes 602, 604, and 608) may have their attribute sets of
k attributes (where k=1 in this example) combined to form
O-edge sub-graph patterns with attribute sets of (k+1)
attributes. Thus, patterns associated with attributes {a, b}, {a,
d}, and {b, d} may be examined as candidate frequent sub-
graph patterns as reflected by nodes 702, 704, and 706,
respectively. The new patterns may be mined for in the
dataset, but none of them except the one with attribute set {b,
d} (reflected by the node 706) is frequent in this example. In
this example, there is no way to proceed with the attribute set
combination process, so the generation of 0-edge sub-graph
patterns may complete.

One or more of the four frequent 0-edge sub-graph patterns
(reflected by the nodes 602, 604, 608, and 706 in FIG. 7) may
be grown to generate 1-edge sub-graph patterns. For example,
FIG. 8 reflects the growth of the node 602 (which is circled in
FIG. 7, and is given a node label of ‘0’ in FIG. 8). In FIG. 8,
the spanned child patterns incorporating the node ‘0’ and
candidate nodes labeled ‘1’ with attributes as shown are on the
right-hand side of arrow 802. The child pattern 804 that is
crossed might not be found in the dataset by sub-graph pattern
mining. The child patterns 806, 808, and 810 may be found in
the dataset, and their support values may be as shown. The
child patterns 806, 808, and 810 may be frequent, and inserted
into Q to be extended after all 0-edge sub-graph patterns are
themselves extended and have their children also inserted into

The 1-edge sub-patterns 806, 808, and 810 may in turn be
grown or extended. For example, the pattern 806 (which is
circled in FIG. 8) may be removed from Q and extended to
span multiple 2-edge sub-graphs as shown in FIG. 9. Patterns
904, 906, and 908 on the right-hand side of arrow 902 in FIG.
9 may have as a pivot node the node with label 0 with respect
to candidate nodes labeled “2°. Patterns 910, 912, and 914
may have as a pivot node the node with label 1 with respect to
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10
candidate nodes labeled ‘2°. The pattern 906 in FIG. 9 may
also appear when the pattern 808 of FIG. 8 is grown. The
second time that the pattern 906 appears (e.g., when extend-
ing or growing the pattern 808), it might not be extended
because the redundancy may be detected.

Embodiments of the disclosure may be tied to particular
machines. For example, in some embodiments a computing
device may be configured to discover supported patterns in
flow graphs that have weights on attributes, nodes, or edges.
The computing device may be configured to identify potential
performance bottlenecks in connection with, e.g., an execu-
tion of a program. In some embodiments, the computing
device may be configured to determine a frequency associ-
ated with one or more nodes or edges.

In some embodiments various functions or acts may take
place at a given location and/or in connection with the opera-
tion of one or more apparatuses or systems. In some embodi-
ments, a portion of a given function or act may be performed
at a first device or location, and the remainder of the function
or act may be performed at one or more additional devices or
locations.

In some embodiments, an apparatus or system may com-
prise at least one processor, and memory storing instructions
that, when executed by the at least one processor, cause the
apparatus or system to perform one or more methodological
acts as described herein. In some embodiments, the memory
may store data, such as one or more structures, metadata,
lines, tags, blocks, strings, etc.

As will be appreciated by one skilled in the art, aspects of
this disclosure may be embodied as a system, method or
computer program product. Accordingly, aspects of the
present disclosure may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or as embodi-
ments combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the disclosure may take the
form of a computer program product embodied in one or more
computer readable medium(s) having computer readable pro-
gram code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific example (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
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medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming language, including an
object oriented programming language such as Java, Small-
talk, C++ or the like and conventional procedural program-
ming language, such as the “C” programming language or
similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the disclosure. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
element components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present disclosure has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the form disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the art
without departing from the scope and spirit of the disclosure.
The embodiments were chosen and described in order to best
explain the principles of the disclosure and the practical appli-
cation, and to enable others of ordinary skill in the art to
understand the disclosure for various embodiments with vari-
ous modifications as are suited to the particular use contem-
plated.

The diagrams depicted herein are illustrative. There may be
many variations to the diagram or the steps (or operations)
described therein without departing from the spirit of the
disclosure. For instance, the steps may be performed in a
differing order or steps may be added, deleted or modified. All
of these variations are considered a part of the disclosure.

It will be understood that those skilled in the art, both now
and in the future, may make various improvements and
enhancements which fall within the scope of the claims which
follow.

APPENDIX
Definitions

k-edge sub-graph: A sub-graph composed of k edges. A
0-edge sub-graph is simply a single node.
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Size of a sub-graph pattern: The number of edges the
sub-graph has.

DS: Dataset of EFGs to be mined.

DS(g): Set of EFGs where instances of a sub-graph pattern
g have been found.

S_w(g): The minimum attribute weight of an instance of a
sub-graph pattern g, summed up over all instances of g.

S_f(g): The minimum edge weight of an instance of a
sub-graph pattern g, summed up over all instances of g.

S_m(g): The support value of a sub-graph pattern g,
defined as the maximum between S_w(g) and S_{{(g).

MinSup: Minimum support value to be compared against
S_m(g) when it is calculated for a candidate pattern g.

Frequent sub-graph pattern: A sub-graph that has its sup-
port value S_m higher than MinSup.

Pattern-growth or pattern extension: The process of adding
to a sub-graph pattern either a single edge connecting two
existing nodes of the pattern, or an edge connecting an exist-
ing node of the pattern to a new node, in order to generate a
new sub-graph pattern. The extended sub-graph pattern is the
parent sub-graph, and the pattern generated from the growth
process is the child sub-graph.

Parent sub-graph pattern: A sub-graph pattern that is
extended to generate other sub-graph patterns.

Child sub-graph pattern: A sub-graph pattern that has been
generated by the extension of another sub-graph pattern (its
parent).

From-node: Considering a directed edge connecting two
nodes, it is the node that has the edge directed from it.

To-node: Considering a directed edge connecting two
nodes, it is the node that has the edge directed towards it.

Pivot node: The from-node of the edge connected to a
parent sub-graph in order to generate its child sub-graph.

Target node: The to-node of the edge connected to a parent
sub-graph in order to generate its child sub-graph. May be a
node that already exists in the parent sub-graph, or a new
node.

k-generation of patterns: The set of all candidate sub-graph
patterns that have the same size k.

Instance of a sub-graph pattern g: Mapping between the
nodes and edges of g and a set of nodes and edges of an EFG
G of DS.

Instances(g, G): List of instances of a sub-graph pattern g
that appear in EFG G of DS.

Initial AttributeList: List of distinct attributes that the
method user is interested in, and that will be used to create the
0-generation of sub-graph patterns.

CurrentAttributeList: List of distinct attributes that appear
in the sub-graph patterns of the k-generation of sub-graphs,
and that will be used to create the (k+1)-generation of sub-
graphs, with k>=0.

OutputSet: Set of frequent sub-graph patterns found by the
presented method.

Q: A data structure, preferably a queue, that holds all fre-
quent sub-graph patterns that must still be extended.

H: A data structure, preferably a hash-table, that holds the
string representation of all frequent sub-graph patterns and is
used to look up whether a pattern has already been mined for.

C: A set of child sub-graph patterns.

Execution Flow Graph: A graph formed by nodes and
edges. Weights may be associated with each node and each
edge, sets of attributes may be associated to each node, and a
value may be associated with each attribute associated with a
node. FIG. 2 is exemplary of a node and an edge of an
Execution Flow Graph showing all their forming elements.
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What is claimed is:

1. A method comprising:

identifying, by an apparatus comprising a processing

device, a pattern in a graph that has a support value

greater than a threshold, wherein:

the graph comprises a plurality of weighted nodes
coupled to one another by one or more weighted
edges, and each of the plurality of nodes is associated
with at least one weighted attribute;

mining, by the apparatus, a plurality of 0-edge sub-graph

patterns in the graph that each comprise an attribute
specified in a list;

inserting, by the apparatus, the 0-edge sub-graph patterns

and respective instances of the 0-edge sub-graph pat-
terns into a first data structure and a second data struc-
ture; and

inserting, by the apparatus, a string representation of the

0-edge sub-graph patterns into a third data structure.

2. The method of claim 1, further comprising:

obtaining, by the apparatus, the graph based on an execu-

tion of a computer program.

3. The method of claim 2, wherein a weight associated with
each of the nodes is a function of time spent executing code
included in the computer program associated with each cor-
responding node, and wherein a weight associated with each
of the one or more edges is a function of a frequency of
execution of code included in the computer program associ-
ated with a to-node coupled to each corresponding edge.

4. The method of claim 3, further comprising:

calculating, by the apparatus, the support value as a func-

tion of the weights associated with the nodes and the one
or more edges.

5. The method of claim 1, further comprising: receiving, by
the apparatus, the list comprising one or more attributes;
determining, by the apparatus, that the pattern comprises at
least one of the one or more attributes included in the list; and
identifying, by the apparatus, the pattern in the graph based on
determining that the pattern comprises at least one of the one
or more attributes included in the list.

6. The method of claim 1, further comprising: determining,
by the apparatus, that the 0-edge sub-graph pattern has a
second support value greater than the threshold; and based on
determining that the 0-edge sub-graph pattern has a second
support value greater than the threshold, mining, by the appa-
ratus, for a second 0-edge sub-graph pattern that comprises
the attribute specified in the list and a second attribute speci-
fied in the list, wherein the second attribute is associated with
a third 0-edge sub-graph pattern that has a third support value
greater than the threshold.

7. The method of claim 1, further comprising: extending,
by the apparatus, the 0-edge sub-graph pattern to a 1-edge
sub-graph pattern by coupling the 0-edge sub-graph pattern to
a second 0-edge sub-graph pattern that comprises a second
attribute in the list and has a second support value greater than
the threshold.

8. The method of claim 1, further comprising:

outputting, by the apparatus, the pattern and an identifica-

tion of where in a dataset one or more instances of the
pattern is located.

9. A computer program product for identifying bottle-
necks, the computer program product comprising a non-tran-
sitory computer readable storage medium having computer
readable program code embodied therewith, the computer
readable program code executable by a computer to perform
a method comprising:

identifying a pattern in a graph that has a support value

greater than a threshold, wherein: the graph comprises a
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plurality of weighted nodes coupled to one another by
one or more weighted edges, and each of the plurality of
nodes is associated with at least one weighted attribute;

mining a plurality of 0-edge sub-graph patterns in the
graph that each comprises an attribute specified in a list;

inserting the O-edge sub-graph patterns and respective
instances of the 0-edge sub-graph patterns into a first
data structure and a second data structure; and

inserting a string representation of the 0-edge sub-graph
patterns into a third data structure.

10. The computer program product of claim 9, wherein the
method further comprises:

obtaining the graph based on an execution of a computer

program,

wherein a weight associated with each of the nodes is a

function of time spent executing code included in the
computer program associated with each corresponding
node, and wherein a weight associated with each of the
one or more edges is a function of a frequency of execu-
tion of code included in the computer program associ-
ated with a to-node coupled to each corresponding edge.

11. The computer program product of claim 9, wherein the
method further comprises: receiving the list comprising one
or more attributes; determining that the pattern comprises at
least one of the one or more attributes included in the list; and
identifying the pattern in the graph based on determining that
the pattern comprises the at least one of the one or more
attributes included in the list.

12. The computer program product of claim 9, wherein the
method further comprises:

removing a sub-graph pattern from the second data struc-

ture;

extending the sub-graph pattern removed from the second

data structure to generate at least one child sub-graph
pattern; and

storing the at least one child sub-graph pattern in the sec-

ond data structure.

13. The computer program product of claim 12, wherein
the method further comprises:

iteratively performing said removing, extending, and stor-

ing until said second data structure is empty.

14. The computer program product of claim 13, wherein
the method further comprises:

mining a plurality of k-edge sub-graph patterns to discover

(k+1)-edge subgraph patterns, where k stands for a posi-
tive integer value; and

removing a k-edge sub-graph from a list of k-edge patterns

when the pattern’s support value is lower than a set
threshold.

15. The computer program product of claim 12, wherein
the storage of the at least one child sub-graph pattern in the
second data structure is based on determining that a string
representation of the at least one child sub-graph pattern does
not appear in the third data structure.

16. The computer program product of claim 9, wherein the
second data structure comprises a queue, and wherein the
third data structure comprises a hash-table, and wherein the
method further comprises: outputting the pattern and an iden-
tification of where in a dataset one or more instances of the
pattern is located from the first data structure.

17. The computer program product of claim 16, wherein
the method further comprises:

associating to each k-edge pattern a list of locations in a

database of flow graphs where instances of the pattern
start;

associating to each k-edge pattern a list of (k+1)-edge

patterns that were derived from the k-edge pattern; and
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using the list of locations to restrict regions in the database
where (k+1)-edge patterns derived from the k-edge pat-
tern are searched.

18. The computer program product of claim 17, wherein

the method further comprises: 5

generating a list of attributes that appear in any of the
k-edge patterns;

using said list of attributes to generate (k+1)-edge patterns;
and

generating a list of attributes that appear in any of the 10
(k+1)-edge patterns through a removal of attributes from
the list of attributes for the k-edge patterns.

#* #* #* #* #*



